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The relationship between observations of cellular Rayleigh-Be'nard convection using 
shadowgraphs and theoretical expressions for convection planforms is considered. 
We determine the shadowgraphs that ought to be observed if the convection is as 
given by theoretical expressions for roll, square or hexagonal planforms and compare 
them with actual experiments. Expressions for the planforms derived from linear 
theory, valid for low supercritical Rayleigh number, produce unambiguous 
shadowgraphs consisting of cells bounded by bright lines, which correspond to 
surfaces through which no fluid flows and on which the vertical component of 
velocity is directed downwards. Dark spots at the centre of cells, indicating regions 
of hot, rising fluid, are not accounted for by linear theory, but can be produced by 
adding higher-order terms, predominantly due to the temperature dependence of a 
materiai property of the fluid, such as its viscosity. 

1. Introduction 
There has been a number of planform studies of Rayleigh-Be'nard convection over 

the past 20 years. On the theoretical side, interest has been in the competition 
between the roll, square and hexagonal planforms for steady convection. On the 
experimental side, convection planforms are often observed using a shadowgraph, 
which is a two-dimensional image of the planform derived from a three-dimensional 
field. The shadowgraph technique relies upon the variation of the refractive index of 
a fluid with its density, and hence its temperature. The aim of this paper is to relate 
observed shadowgraph patterns to theoretical representations of particular plan- 
forms. 

When referring to cellular convection, many authors quote the paper of Stuart 
(1964), which appears to be the currently accepted view of the relationship between 
theory and experiment. In that paper, Stuart points out the differences in form of the 
hexagonal cell and the so-called square and rectangular cells. His conclusion is that 
a square (or rectangular) cell of the generally accepted form, derived from linear 
theory, would not be observed in experiments. His reasons are based upon the 
assumption that the observed cellular boundaries are surfaces through which no fluid 
passes and on which the vertical component of velocity has the same sign 
everywhere. There is no unambiguous way of obtaining such surfaces for the square 
or rectangular solutions. We show that the shadowgraph technique does produce an 
unambiguous pattern for the square solution, as indeed it does for the hexagonal and 
roll solutions, and that the cell boundaries are in fact the surfaces on which fluid is 
moving downwards. Moreover, we assert that the shadowgraph patterns obtained for 
convection a t  highly supercritical Rayleigh numbers are related to the roll, square 
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FIGURE 1. Schematic of the shadowgraph process (from Busse 1978). 

and hexagonal solutions derived from linear theory, but are modified by higher-order 
terms. 

Experimental work by Koschmieder (1966), Whitehead & Parsons (1978), White 
(1982), Oliver & Booker (1983) and Le Gal Pocheau & Croquette (1985) has shown 
that steady square-cell convection is physically possible, and theoretical studies have 
shown that it is the preferred solution under certain conditions (Busse & Riahi 1980 : 
Proctor 1981; Jenkins & Proctor 1984; Busse & Frick 1985; Jenkins 1987). However, 
there has been some discussion about the nature of the square cell observed and its 
relation to theory. Instead of the ' chequerboard ' pattern conventionally thought of 
as representing square-planform convection, shadowgraphs of the observed cells 
exhibited hot regions (which appear as dark spots) a t  the centre of each square, and 
cold regions (bright lines) along the edges. Drobyshevski & Yuferev (1974) proposed 
an alternative form for square-cell convection which has the same topology as the 
hexagonal planform, and which has been used in recent studies (e.g. Arter 1985; 
Schmidt, Simon & Weiss 1985). It has been asserted (Swift 1984) that the lack of 
vertical symmebry due to the temperature-dependent viscosity leads to the different 
type of square cell. We show that the observed patterns can be accounted for by 
careful consideration of the shadowgraph technique. At the same time, we examine 
the shadowgraph patt>ern produced by roll and hexagonal convection. 

It has been stated that a shadowgraph represents the vertically averaged 
temperature of the fluid layer (Busse 1978; Arter 1985). Because the temperature 
field takes the same form as the vertical velocity of the fluid (in the linear 
approximation), a shadowgraph is also int,erpreted as indicating regions of rising and 
sinking fluid. In fact, a shadowgraph is produced by deflection of light rays passed 
bhrough the fluid layer and subsequently focused onto a screen (see figure 1 ) .  The 
effect of deflecbion and focusing is to produce a pattern which is related to the 
temperature field, but is not actually a vertical average. 

In the following section we present theoretical descriptions of convection 
planforms, and a model of the shadowgraph technique is proposed in $3.  In  $ 4  we 
present' pictures depicting theoretical shadowgraphs derived from the model 
eyuations and relate them to actual experiments. Finally, we summarize the results 
and discuss their implications. 

It is believed that the work shown here is the first attempt. to derive shadowgraph 
patterns from theoret,ical expressions for three-dimensional thermal convection. 
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Houseman (1981) has used a similar procedure to investigate light-intensity 
variations caused by two-dimensional convection. He used numerical solutions of a 
thermal-convection problem at  high Rayleigh numbers as input to his model and 
found good agreement with measurements of light intensity in the corresponding 
experimental configuration. 

2. Convection planforms 
The onset of Rayleigh-B6nard convection represents a deviation from the basic 

state of no fluid motion and a linear temperature profile in the vertical direction. In  
an appropriately scaled Cartesian coordinate system, the temperature T a t  any point 
in the layer may be written as 

T-T, = - ~ + T ’ ( x , y , z , t ) ,  (2.1) 

where To is a reference temperature, z is the vertical coordinate, T‘ is the deviation 
from the basic state and t is time. For convection sufficiently close to onset, T‘ and 
the fluid velocity may be expanded in terms of a small parameter c ,  in the form 

T’ = f11+e2T2+e3T,+ ..., (2 .2 )  

and the expansions substituted into the appropriate nonlinear equations for the 
conservation of heat, mass and momentum. At first order in E ,  the equations are 
linear, and separable in the horizontal coordinates, so we can write 

(2 .3 )  

where w1 is the vertical component of velocity a t  first order. The function f is the 
planform function, and it satisfies the Helmholtz equation 

where the subscripts denote differentiation, and a2 denotes the sum of the squares of 
the horizontal wavenumbers. Equation (2.4) has an infinite number of solutions, and 
the actual solution that is observed in a given situation cannot be determined from 
linear theory, Of particular interest among the solutions of (2.4) are the following 
‘regular ’ solutions : 

f = cosar, (2 .5)  

f = cos f( v’3a.X + a y )  + cos $( d 3 a x  - wy) + cos ay, (2.7) 

f = cos ax + cos ay, (2.6) 

which represent roll, square and hexagona1 planforms, respectively. These are steady 
solutions, and which of them is realized in an experiment is determined by factors 
such as boundary conditions and properties of the convecting fluid. At second and 
higher orders in the expansion, higher-order approximations to the temperature and 
velocity field are obtained. 

A particularly interesting situation is the one in which the boundaries of the 
convection layer are very poor conductors of heat. Then the horizontal lengthscale 
is so large that an expansion scheme can be developed which separates the vertical 
and horizontal coordinates. This problem has been considered by Chapman & 
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Proctor (1980), Proctor (1981), Gertsberg & Sivashinsky (1981) and Depassier & 
Spiegel (1982).  The following nonlinear equation for f can be derived : 

ft = -A(R-Rc) vLf-RV&f+CVH. (Iv,fI2 V H f )  + 5VH. ( f V , f ) - f ,  (2 .8)  
where A,  B and C are constants, R is the Rayleigh number and R, is the critical 
Rayleigh number for perfectly insulating boundaries, VH is the horizontal gradient 
and 6 is an O(1)  parameter which is a measure of the temperature dependence of 
viscosity, defined by 

Here po and To are the viscosity and temperature, respectively, a t  the centre of the 
fluid layer and e is the expansion parameter, which depends on the (small) thermal 
conductivity of the boundaries of the layer. 

We are only interested in steady convection, so we set the left-hand side of (2 .8)  
to  zero. Expanding f in terms of a small parameter 6 as 

P = Poi1 -e2t(57-570)1. 

f = Lyl + Szfi + 63f3 + . . . , (2 .9)  
and substituting into (2 .8)  we obtain a series of linear problems, which yield the 
solutions 

f2 = - i ( (P2 cos 2ax + Q2 cos 2ay) - 2tPQ cos ax cos ay,  (2 .10a)  

f3 = p, (P3 cos3ax+Q3 cos 3ay)+p, (PQ2 cosux cos2ay+P2Q cos2ax cosay), (2.10b) 

where P = Q = 1 for a square planform and P = 1, Q = 0 for a roll planform. The 
coefficients p ,  and p ,  are, for rigid boundaries, 

P, = &i? + t21, P2 = A[$ + y c21 
For a hexagonal planform a similar expansion yields 

(2.11) 

f 2 = - i,$[COS (1/3ax + ay)  + cos (1/3ax - ay)  + cos 2ayl 
- g[cos  ( d 3 a x )  + cos fr( d 3 a z  + 3ay) + cos f( d 3 a x  - 3 a y ) ] ,  (2.12u) 

+ cos $( 4 3 a x  - 5ay)  + cos +( 3d3u.X + uy)  + cos $(32/3ax - ay)] ,  (2.12 b )  

f 3  = P,[COS 3 a y +  ~ 0 ~ + ( 3 2 / 3 a x +  3ay )  + c o ~ i ( 3 1 / 3 a x -  3ay ) ]  
+ p , [ e 0 ~ ( 2 / 3 ~ x + 2 a y ) + c o s ( 1 / 3 a z - 2 ~ y ) +  c 0 ~ 9 ( 1 / 3 a x + 5 a y )  

where p 3  = &y+g$] .  (2.13) 

The expressions for fl are the planforms given in (2 .5)-(2.7) .  
The advantage of the poorly conducting-boundary solution is that the algebra 

involved is simple enough to allow the expansion to  be carried to  third order. The 
expressions for the various planforms will be used in the remainder of the paper as 
prototypes of roll, square and hexagonal convection planforms in order to determine 
the shadowgraphs that they produce. 

3. Shadowgraph model 
Consider the configuration shown in figure 2. Parallel vertical light rays enter a 

horizontal layer of fluid whose refractive index n(x,  y, z )  varies throughout the fluid. 
The refractive index of a fluid varies with the fluid temperature approximately as 

n = no+nl(T--To). 
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Parallel light rays 

FIGURE 2. Configuration for determination of the model equations. 

For most fluids, n, is negative, so the refractive index decreases with increasing 
temperature. Consequently, light rays bend towards colder fluid regions. Houseman 
(1981) gave the following values for silicone oil: 

no = 1.4135, n, = -3.8122 x lop4 K-I 

which is typical of experimental fluids. Thus a temperature variation of 50 K in an 
experiment using silicone oil would result in a maximum variation of only 0.02 in 
refractive index. 

The path through the fluid layer is short, so the horizontal position (x,, yl) at which 
the light ray exits the layer will differ only slightly from ( x o ,  yo). However, two rays 
entering parallel, but in different parts of the layer, will exit with small deviations 
from parallel. Once the rays exit the layer, they travel through a medium with 
constant refractive index (i.e. air), so their trajectories are straight lines. The 
deflections caused by the fluid layer lead to the rays converging in some areas and 
diverging in others, The converging rays will focus, i.e. converge to  a point, a t  some 
height above the layer, which corresponds to the screen position in the experimental 
set-up (figure 1) .  

A simple shadowgraph model can be derived by assuming that the deflection of a 
ray through the fluid is negligible, so a ray entering the layer at (xo, yo) also exits a t  
(xo, yo). However, the variation in refractive index due to thermal convection causes 
the ray to exit the layer bent in the direction of the gradient off. Then at the top of 
the layer we have 

X' = -Kfz ,  y' = -Kf,, (3 . la ,  b)  

where the constant K is positive, since rays deflect towards colder regions of fluid. 
This is the paraxial approximation, and has been shown by Ryrie (1987) to be valid 
when the variations in refractive index are small and the fluid layer is thin. We focus 
the rays a t  a height zF by integrating (3.1) to give 

(3.2a, b) X k F )  = zo -Kfz ZF, YiZF)  = Yo -K& ZF. 
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The Jacobian 
a(x(z )> Y ( 4 )  J ( z )  = 

Yo) 

gives a measure of the area change along a ray trajectory, and consequently light 
intensity is proportional to  the inverse of the Jacobian. The Jacobian a t  the focusing 
level is 

J = 1 -Kz,(f,,+f,,) +K2~;4L&,-f;,)> (3.3) 

where the derivatives in (3.2), (3.3) are evaluated a t  (xo, yo). The value of K depends 
on the parameter n, and thc Rayleigh number R, so it determines thc height a t  which 
focusing occurs. 

A more detailed model of the deflection of light rays through the fluid layer can be 
derived from Fermat's principle. Such a model would be useful if the temperature 
field is known throughout the fluid layer, such as in numerical solutions of a given 
convection problem (e.g. Artcr 1985; Busse & Frick 1985 who consider square- 
planform convection). The appropriate equations are given in Merzkirch (1974) and 
Emrich (1981, part 2). The model proposed here is particularly simple and 
immediately applicable to the long-wavelength approximations. 

The most striking representation of theoretical shadowgraphs is achieved when the 
light-intensity pattern is used to produce pictures that rcscmble actual shadou - 
graphs, using a laser printer capable of representing 33 c-tiffercnt shades of grcy. 
Each picture consists of a rectangular array of picture elements (pixels), each of 
which is assigned a shade of grey, assuming a logarithmic relationship between the 
light intensity and grey level, because both the human eye and photographic 
emulsion respond approximately logarithmically to  light intensity. The pictures are 
scaled such that the brightest point is represented by a pure white pixel and the 
darkest spot by a pure black pixel. The similarity between the pictures and actual 
shadowgraphs is impressive and enlightening. 

4. Results 
The focusing height, z = zF, is the height at which converging light rays first 

intersect. At such a point, the Jacobian is zero, so the light intensity is infinite. In 
the theoretical shadowgraphs presented here, the focusing height is set so that the 
ratio of maximum to minimum light intensity is about 200, which avoids the problem 
of infinite intensity. 

Figure 3 ( a )  shows the theoretical shadowgraph for the roll planform, equation 
(2.5), over the range -8n/a < x < &/a. At a position just above the convecting 
layer, the variation in light intensity is small. But a t  z = zF there is a large variation 
in light intensity. The sinusoidally varying temperature distribution is represented 
by sharp white lines separating large dark regions. The white lines correspond to 
vertical surfaces on which the temperature is a minimum, and correspondingly the 
vertical velocity component is directed downwards. Figure 3 ( b )  shows a photograph 
of an actual shadowgraph of convection near onset in the form of rolls, observed by 
Busse & Whitehead (1971). The correspondence between the theoretical and 
experimental shadowgraphs is obvious. 

Figure 4 (a) shows the theoretical shadowgraph for the square planform, equation 
(2.6), over the range -4nla < x, y < 4n/a. The temperature distribution in the 
convecting fluid is a chequerboard pattern, but once the light is focused, the picture 
consists of intersecting bright lines and large dark areas. Again, the bright lines are 
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(6)  

FIGURE 3. (a )  Theoretical shadowgraph for roll-planform convection, equation (2.5). The picture is 
for the range - 8 4 a  < z 6 &/a. ( b )  Experimentally observed shadowgraph for roll-planform 
convection near onset (from Busse C Whitehead 1971). 

caused by the deflection of light rays towards the cold fluid, and they represent 
surfaces through which no fluid flows and the vertical velocity component is directed 
downwards (or is zero). A shadowgraph of convection near onset in the form of 
square cells, observed by Le Gal et al. (1985), is shown in figure 4 ( b ) .  There is close 
correspondence between the experimental and theoretical shadowgraphs. 

Figure 5 ( a )  shows the theoretical shadowgraph for the hexagonal planform, 
equation (2.7), over the range 0 d x d 16zc/2/3a, -6zln. d y d 2zla. The shadow- 
graph is a series of bright lines, which constitute the cell boundaries of the 
hexagons. These are again surfaces through which no fluid flows and on which the 
vertical velocity component is directed downwards. Koschmieder & Biggerstaff 
(1986) obtained shadowgraphs of the onset of hexagonal convection in a thin fluid 
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(4 
FIGURE 4. (a) Theoretical shadowgraph for square-planform convection, equation (2.6). The picture 
is for the range -4n/a < z,y < 4n/a. ( b )  Experimentally observed shadowgraph for square- 
planform convection near onset (from Le Gal et al. 1985). 
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(b) 

FIGURE 5 .  (a)  Theoretical shadowgraph for /-hexagonal-planform convection, equation (2.7).  The 
picture is for the range 0 < x < 16n/d3a, -6nla < y < 27r/a. (b )  Experimentally observed 
shadowgraph for hexagonal-planform convection near onset (from Koschmieder & Biggerstaff 
1986). 
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(b) 

FIGURE 6. (a )  Theoretical shadowgraph for g-hexagonal-planform convection, i.e equation (2 .7 )  
multiplied by - 1. ( b )  Experimentally observed shadowgraph for down-hexagonal convection 
(from Carrigan 1985). The wavy pattern is not associated w ~ t h  the flow field. 
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layer, and one such pattern is reproduced in figure 5 ( 6 ) .  There is excellent 
correspondence between the theoretical and experimental shadowgraphs. 

Changing the sign o f f  for the roll and square planforms results in the same 
shadowgraph pattern, translated by n/a in each direction. For the hexagonal 
planform, however, changing the sign off produces an entirely different pattern, as 
shown in figure 6 ( a ) .  The light rays are now focused at  the centre of each hexagon, 
yielding an array of bright spots surrounded by dark patches. Figure 6 ( b )  shows a 
shadowgraph produced by Carrigan (1985) in an experimental study of convection 
with internal heating. The two figures are very similar, indicating that fluid is flowing 
down a t  the centre of each hexagon and up along the edges of the cells, which are 
not visible. There is also the impression of bright regions joining each bright spot in 
figure 6, so the pattern resembles an array of equilateral triangles. Triangular patterns 
have been observed by White (t982), but the relationship with figure 6 is unclear. In 
the notation of Busse (1978), the shadowgraphs of figure 5 correspond to the t- 
hexagon, commonly observed in liquids, while that of figure 6 corresponds to the g- 
hexagon, commonly observed in gases. The g-hexagon is called a down-hexagon by 
Carrigan, since he observed this form of convection in liquids with internal 
heating. 

The significance of figures 3-6 is that we have provided a direct comparison of the 
shadowgraphs produced by theoretical expressions of linear theory with experiments 
of convection near onset, where linear effects dominate. We have shown that the 
square planform produces a shadowgraph comprising square cells, and that bright 
lines coincide with surfaces through which no fluid flows, and on which the vertical 
component of velocity is directed downwards (or is zero). The results confirm the 
ideas of Stuart (1964) for the hexagonal planform, but refute his suggestion that 
equation (2.6) for the square planform will not result in square cells. The ambiguity 
inherent in the square planform, under Stuart’s definition of cellular boundaries, is 
removed because the focusing effect of shadowgraphs selects the downwards-flowing 
(and hence cold) surfaces. 

The effect of the logarithmic filter applied to the light-intensity data is significant. 
Without it the square planform looks different because there are sharp peaks of light 
intensity at the corners of each cell, resulting in a square array of bright spots. 
However, as we are attempting to produce pictures that represent shadowgraphs, it 
is necessary to take account of all steps in the process, including the response of the 
viewing apparatus, whether it be eyes or a camera. 

At Rayleigh numbers significantly above critical, the linear approximations 
represented by (2.3)-(2.7) will be modified by higher-order terms. We consider the 
shadowgraphs produced by a planform function of the form (2.9) derived from the 
long-wavelength equation ( 2 . 8 ) .  We emphasize that the examples presented are 
indicative of the effects of higher-order terms, but may be somewhat arbitrary. The 
parameters S and 6 have been adjusted until a picture having certain desired features 
was obtained. Also, the form o f f  given here is only applicable to the poorly 
conducting-boundaries example. 

Figure 7 ( a )  shows a shadowgraph of the roll planform derived from (2.5), (2.10) 
and (2.1 l ) ,  with 6 = 2.5 and [ = 0.1. There are additional bright bands due to higher- 
order terms, which creates the impression of a dark strip along the centre of each roll. 
Figure 7(6) shows a shadowgraph of roll cells by Busse & Whitehead (1971). This 
represents convection a t  a highly supercritical Rayleigh number, where nonlinear 
effects are significant. Even so, there is some resemblance between the theoretical 
and experimental shadowgraphs. Figure 8 ( a )  shows a shadowgraph of the square 
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(b) 

FIGURE 7 .  (a )  Theoretical shadowgraph for roll-planform convection, including higher-order terms, 
with 6 = 2.5 and 5 = 0.1. ( b )  Experimentally observed shadowgraph for roll-planform convection 
at high Rayleigh number (from Russe & Whitehead 1971). 

planform derived from (2.6), (2.10) and (2.11), with S = 2.5 and = 0.1. The square 
cell remains almost intact, but the combination of higher-order terms has produced 
a dark spot in the centre of each cell surrounded by a halo. The result is reminiscent 
of the cell interiors observed by White (1982), such as in the shadowgraph shown in 
figure 8 ( b ) .  This shadowgraph represents highly supercritical convection, where 
again the effects of nonlinearities are significant. Such a result could only be obtained 
with non-zero 5, so that fi was non-zero, which suggests that the dark-spot effect is 
due primarily to the temperature dependence of viscosity. Figure 9 shows a 
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(b) 

FIGURE 8. (a )  Theoretical shadowgraph for square-planform convection, including higher-order 
terms, with 6 = 2.5 and 5 = 0.1. ( b )  Experimentally observed shadowgraph for square-planform 
convection a t  high Rayleigh number (from White 1982). 
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FIGUHE 9. Theoretical shadowgraph for L-hexagonal-planform convection, including higher- 
order terms, with S = 2.5 and [ = 0.1. 

shadowgraph of an t-hexagon derived from (2.7), (2.1 1)-(2.13), with 8 = 2.5 and 5 = 
0.1. Again the combination of linear and higher-order terms has produced a cell that 
has a dark spot in the centre surrounded by a brighter region, also reminiscent of 
experimental results. Figure 10 shows a shadowgraph Qf a g-hexagon derived from 
( 2 . 7 ) .  (2.11) (2.13), with S = -2.5 and 5 = 0.1. The erect  of the higher-ordcr tcvtis 
this time is to produce hexagonal haloes around each bright spot. The triangular 
image of the linear shadowgraph has disappeared. 

Another convection planform sometimes observed in convection experiments (see 
for example Busse & Whitehead 1974) is the bimodal planform. It is essentially the 
superposition of a set of rolls of small amplitude and large wavenumber perpendicular 
to  a dominant set of rolls. The discrepancy in wavenumbers between the two sets of 
rolls results in a rectangular-cell structure. The bimodal planform is a high-ltayleigh- 
number phenomenon, so it would be difficult to generate an accurate shadowgraph 
using the approach presented here. As an example. we present the shadowgraph of 
figure 11 (a), which was obtained from the planform function 

f =  c0sax+0.2 cos 1 . 5 ~ ~ .  (4.1) 
The shadowgraph in figurc 11 ( b )  is from an experiment by Busse & Whitehcad 
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FIGURE 10. Theoretical shadowgraph for g-hexagonal-planform conrection. including higher- 
order terms, with S = - 2.5 and 6 = 0. I .  

(1974). The two figures do not compare particularly well, probably because (4.1) is 
not an accurate representation of the flow. 

Another effect to consider in the production of shadowgraphs is caustics. These are 
observed when the screen is placed a t  a point past the focusing plane. At such a point, 
some light rays have intersected and the result is that discontinuities exist in the 
intensity field. As an example, we present a theoretical shadowgraph for the roll 
planform of figure 7 ( a ) ,  but at approximately 10 times the focusing height, zF. The 
result, shown in figure 12, resembles figure 7 ( b ) ,  indicating that caustics may occur 
in the experimental result. The discontinuity in intensity (i.e. the caustic) results in 
clearly defined dark regions separating light bands, with bright lines a t  the centre. 
For high-Rayleigh-number flows, the focusing height may be much smaller than for 
flows near onset (since the deflection through the layer, and hence K ,  ought to be 
greater), so it is easily understood how caustics may be apparent in shadowgraphs. 
The existence of caustics makes the interpretation of shadowgraphs more difficult. 

5. Conclusions 
The following points are evident from this study. 
(i) A shadowgraph is not simply a vertical average of the temperature field in a 
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@) 

FIGURE 1 1 .  (a) Theoretical shadowgraph for bimodal convection, equation (4.1). The picture is for 
the range -4nla i x Q 4nla, -8n/3a i y i 8n/3a. ( b )  Experimentally observed shadowgraph for 
bimodal convection (from Busse & Whitehead 1974). 

convecting fluid, owing to the effect of focusing of light rays above the fluid layer and 
the possibility of caustics. 

(ii) When the t,emperature field takes the form of a roll, square or hexagonal 
planform of linear theory, the shadowgraph comprises bright lines along the edge of 
each cell and cell interiors of almost uniform light intensity. The bright lines 
correspond to surfaces through which no fluid flows and on which the vertical 
component of velocity is directed downwards. The effect of focusing in the 
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FIGURE 12. Theoretical shadowgraph for roll-planform convection, with 8 = 2.5 and 6 = 0.1, a t  
approximately I 0  times the focusing height. 

shadowgraph process is to remove the ambiguity in the definition of square cell 
boundaries, as suggested by Stuart (1964). 

(iii) Experimental studies of convection near onset by Busse & Whitehead (1971), 
Le Gal et ul. (1985) and Koschmieder & Biggerstaff (1986) have produced 
shadowgraphs of roll, square and hexagonal cells, respectively, which are very 
similar to the shadowgraphs produced here using only linear terms. 

(iv) There is no dark spot a t  the centre of a hexagonal cell, corresponding to the 
upward fluid motion there. The dark spot is a higher-order effect. Similarly, there is 
no dark line a t  the centre of a roll cell. 

(v) The dark-spot effect can be produced by adding higher-order terms to the 
planform function for each of the roll, square or hexagonal planforms. The effect is 
generally observed at  highly supercritical Rayleigh numbers, where the linear form 
is significantly modified. 

(vi) Modelling of the shadowgraph process is a useful tool for prediction of 
experimentally observed shadowgraph patterns corresponding to theoretically or 
computationally derived convection planforms. In particular, it should be valuable 
for comparison of numerical studies of three-dimensional convection, such as those 
by Arter (1985), Frick, Busse & Clever (1983) and Busse & Frick (1985), with actual 
observations. The amount of computation required for determining the shadow- 
graphs ought to be small compared with that necessary for generating the 
numerical solutions. 

Finally, we note that the square planform proposed by Drobyshevski & Yuferev 
(1974), in order to give the same topology as a hexagon, is essentially just the second- 
order terms, fi, given by (2.11 a ) .  Such a form alone could not produce shadowgraphs 
comparable with those observed. 
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